стереть
Класс
8 9 10 11
Нужно авторизоваться
Нужно авторизоваться
Нужно авторизоваться
Нет аккаунта?
При наличии аккаунта на платформе можно
Введите больше 6 символов
Проблемы со входом?
Введи последние 4 цифры номера, с которого
поступит звонок. Трубку брать не нужно.
Повторный звонок через
сек.
Добро пожаловать!
Зарегистрируйся и получи Демо мастер-группы на 10 дней по любимым предметам бесплатно.
Добро пожаловать!
Как тебя зовут?
Введите не меньше 2 символов
Привяжем номер телефона
Введите не меньше 2 символов
Привяжем номер телефона
Повторный звонок через
30 сек.
Теперь нужно подтвердить номер - введи последние 4 цифры номера, с которого поступит звонок. Трубку брать не нужно
Введите не меньше 2 символов
Придумаем пароль
Почти закончили! Теперь нужно создать надежный пароль
Введите не меньше 2 символов
Немного о тебе
В какой класс ты переходишь?
Укажи, какие предметы будешь или хочешь сдавать
Введите не меньше 2 символов
На почту 12345@mail.ru отправлена ссылка для сброса пароля.
OK
Профильная математика

Задача по теме: "Табличные кредиты"

Профильная математика
Задание 16 Табличные кредиты
Подсказка
За подсказку ты получишь лишь половину баллов
Использовать
Автор
Ященко И.В. Математика. Профильный уровень: единый государственный экзамен. — Москва: Издательство "Национальное образование", 2024. — 224 с. Материалы публикуются в учебных целях
Просмотры
44
banner-img

По вкладу «А» банк в конце каждого года увеличивает на 10% сумму, имеющуюся на вкладе в начале года, а по вкладу «Б» - увеличивает эту сумму на 14% в течение каждого из первых двух лет. Найдите наименьшее натуральное число процентов, начисленное за третий год по вкладу «Б», при котором за все три года этот вклад будет более выгоден, чем вклад «А».

Решение

Решение:

  Вклад «А» увеличивается каждый год в течении трех лет на знак 10 процентов т. е. вклад в конце каждого года становится равным 1 запятая 1 С. Через три года на вкладе «A» будет:

1 запятая 1 кубическая секунда равна 1 запятой 331 секунде

 

 Вклад «Б» увеличивается каждый год в течении первых двух лет на знак 14 процентов т. е. вклад в конце каждого года становится равным 1 запятая 14 секунд 

В третий год вклад увеличивался на знак процента n

100 плюс n процентов поставьте знак в открытых круглых скобках 1 плюс n более 100 закройте круглые скобки

Через три года на вкладе «Б» будет:

1 запятая 14 квадратных скобок в открытых скобках 1 плюс n более 100 закрытых скобок равно 1 запятой 2996 открытых скобок 1 плюс n более 100 закрытых скобок

По условию на вкладе «Б» через три года, должно быть больше денег, чем на вкладе «А», при этом найти наименьший процент n в третий год:

 

1 запятая 2996 раз за секунду открывает круглые скобки 1 плюс n более 100 закрывает круглые скобки больше, чем на 1 запятую 331 раз за секунду

Поделим на S двоеточие

1 запятая 2996 раз ставится в открытые скобки 1 плюс n более 100 раз ставятся в закрытые скобки больше 1 запятой 331

1 запятая 2996 плюс 1 запятая 2996 умножить на n более чем на 100 больше, чем на 1 запятую 331

1 запятая 2996 раз n более 100 больше 0 запятая 0314

Умножим обе части неравентва на дробь дробь в числителе 100 в знаменателе 1 запятая 2996 в конце дроби двоеточие

n больше 0 запятая 0314 раз дробь в числителе 100 больше знаменателя 1 запятая 2996 конечная дробь

n больше дроби в числителе 3 запятая 14 в знаменателе 1 запятая 2996 конечная дробь

n больше 2 1352 более 3249


   Ответ:3


На экзамене это задание принесло бы тебе 2/2 баллов.

Сообщение об ошибке

Расскажите, в каком месте допущена ошибка, мы как можно быстрее её исправим. Спасибо за обратную связь!

Здравствуйте!

Выберите информацию о себе ниже

pay-success-img

Оплата прошла успешно!

pay-un-success-img

Оплата не прошла

Попробуйте снова