
Задача по теме: "Сложные функции"
Найдите наибольшее значение функции на отрезке


Решение:
Найдем производную заданной функции (не забываем, что производная произведения считается следующим образов ):
Производная равна нулю в точках экстремумов функции, поэтому найдем нули производной:
Раскроем скобки и приведем подобные слагаемые:
Для решения воспользуемся формулой дискриминанта и корней квадратного уравнения (корни уравнения можно найти другим способом – по теореме Виета).
Воспользуемся методом интервалов и определим поведение производной:
В точке заданная функция имеет максимум, являющийся ее наибольшим значением на заданном отрезке. Найдем это наибольшее значение:
Ответ: -6
Сообщение об ошибке
Расскажите, в каком месте допущена ошибка, мы как можно быстрее её исправим. Спасибо за обратную связь!

МГ | Pro | ProMax | |
Практика на платформе | |||
Отслеживание прогресса обучения | |||
Двухуровневое домашнее задание после каждого вебинара | |||
Все материалы составлены экспертом ЕГЭ | |||
Персональный менеджер | |||
Личный куратор | |||
Разбор ошибок личным куратором | |||
Еженедельные созвоны с куратором для закрытия индивидуальных пробелов | |||
Составление индивидуального расписания |

счёта
средств
подтверждено!
Теперь вы можете приступить
к следующему уроку
курса по математике
замены
Для смены номера телефона
мы отправили Вам код по СМС,
введите его в поле ниже.
Электронная почта
На почту придет чек об оплатеНажимая кнопку "купить", Вы выражаете своё согласие с офертой оказания услуг и принимаете их условия
Здравствуйте!
Выберите информацию о себе ниже

Оплата прошла успешно!
