стереть
Класс
8 9 10 11
Нужно авторизоваться
Нужно авторизоваться
Нужно авторизоваться
Нет аккаунта?
При наличии аккаунта на платформе можно
Введите больше 6 символов
Проблемы со входом?
Введи последние 4 цифры номера, с которого
поступит звонок. Трубку брать не нужно.
Повторный звонок через
сек.
Добро пожаловать!
Зарегистрируйся и получи Демо мастер-группы на 10 дней по любимым предметам бесплатно.
Добро пожаловать!
Как тебя зовут?
Введите не меньше 2 символов
Привяжем номер телефона
Введите не меньше 2 символов
Привяжем номер телефона
Повторный звонок через
30 сек.
Теперь нужно подтвердить номер - введи последние 4 цифры номера, с которого поступит звонок. Трубку брать не нужно
Введите не меньше 2 символов
Придумаем пароль
Почти закончили! Теперь нужно создать надежный пароль
Введите не меньше 2 символов
Немного о тебе
В какой класс ты переходишь?
Укажи, какие предметы будешь или хочешь сдавать
Введите не меньше 2 символов
На почту 12345@mail.ru отправлена ссылка для сброса пароля.
OK
Информатика

Задача по теме: "Теория игр (Задания 20)"

Информатика
Задание 20 Теория игр (Задания 20)
Подсказка
За подсказку ты получишь лишь половину баллов
Использовать
Автор
Крылов С.С., Чуркина Т.Е. Информатика: единый государственный экзамен. — Москва: Издательство "Национальное образование", 2023. — 256 с. Материалы публикуются в учебных целях
Просмотры
19
banner-img

50 Теория игр. Две кучи

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень либо увеличить количество камней в куче в два раза. Например, пусть в одной куче 10 камней, а в другой 7 камней; такую позицию в игре будем обозначать (10, 7). Тогда за один ход можно получить любую из четырех позиций: (11, 7), (20, 7), (10, 8), (10, 14). Для того чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда произведение количеств камней в кучах становится не менее 144. Победителем считается игрок, сделавший последний ход, т.е. первым получивший такую позицию, что произведение количеств камней в кучах будет 144 или больше.

В начальный момент в первой куче было два камня, во второй куче -  S камней, 1 ≤ S ≤ 141.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока - значит описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Для игры, описанной в задании 19, найдите два наименьших значения S, при которых у Пети есть выигрышная стратегия, причем одновременно выполняются два условия:

  • Петя не может выиграть за один ход;
  • Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

loading
Решение
single-task__solution-banner

Решение:

Для решения воспользуемся таблицами Excel:

Составляем деревья всех ходов Пети и Вани. Создаем условное форматирование на последние 2 столбца (нам нужно, чтобы зеленом отмечалось, если Петя выигрывает, а красным - Ваня выигрывает). Меняя значение начальной кучи, смотрим на изменение ситуации выигрыша и так находим нужное значение.

Вся таблица и полное решение представлено в файле.

 


Ответ: 17 23

На экзамене это задание принесло бы тебе 2/2 баллов.
Решать еще

Сообщение об ошибке

Расскажите, в каком месте допущена ошибка, мы как можно быстрее её исправим. Спасибо за обратную связь!

Здравствуйте!

Выберите информацию о себе ниже

pay-success-img

Оплата прошла успешно!

pay-un-success-img

Оплата не прошла

Попробуйте снова